
BACHELET ET AL. (2005) USED the Dynamic
Global Vegetation Model (DGVM) MC1 to
project what climate change might mean in
terms of vegetation distribution, carbon storage
or emissions, and wildfire risk in Alaska. The
results pointed toward significant changes to

arctic ecosystems with 77–90% of the tundra
present in Alaska in 1920 possibly disappear-
ing by the end of the 21st Century. Interior
boreal mixed forests could migrate northward,
creating maritime and temperate conifer
forests much like those of southeast Alaska.
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ABSTRACT.—Despite the scarcity of sustained funding to promote continuous record collection,
scientists and citizens around the world are now generating large volumes of monitoring data that
vary in quality, format, supporting documentation, and accessibility. Complex interactions
between climate, fauna, flora, and human land use challenge the understanding and forecasting
of the mechanisms of change. Diverse models are now being run at various spatial and temporal
scales to understand past climate variability and its impacts, generate future climate and land use
scenarios, and project potential future impacts to the planet’s inhabitants. Estimates of the uncer-
tainty associated with past observations and climate proxies, and with the results from climate
and climate impacts models, are often discussed but rarely quantified in a useful way to help land
managers. Ultimately, social choices and political decisions hold the keys to the future in terms
of emissions, land use (agriculture, urbanization, industrialization, energy resource acquisition),
and conservation efforts. Conservation practitioners and land managers are struggling to synthe-
size the wealth of available information and heed warnings of the unpredictable human response
to change. They have to identify the relevant and usable datasets, become aware of gaps in knowl-
edge and information, and translate evolving science results into on-the-ground climate-aware
strategies. Many agencies and NGOs are currently involved in synthesizing observations and sim-
ulations, developing land management strategies, and implementing those they judge are most
likely to succeed or at least cause the least harm. Collaboration and effective information sharing
is essential to work effectively towards common goals. This paper includes examples of sources
of climate change information, a brief summary of the types of models currently used in climate
change science projects, and illustrations of collaborative efforts that address climate change
issues specifically focused on the Gyrfalcon in panarctic regions. Received 8 August 2011,
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The “woodification” of the entire state would
greatly increase the potential extent of the area
burned by wildfires. More recently, Feng et al.
(2011) used 16 more recent future climate pro-
jections in the Köppen-Trewartha climate clas-
sification method and projected a 33 to 44%
decrease in tundra extent (from current) by the
end of the century, accompanied by a north-
ward shift of coniferous forests and needle-leaf
trees. Field observations are now also support-
ing the model results. Beck et al. (2011) use
tree ring data and satellite information to show
evidence of growth increases at the boreal–tun-
dra ecotone in contrast with drought-induced
productivity declines throughout interior
Alaska. The Arctic Council's working group
for environmental monitoring (the Arctic Mon-
itoring and Assessment Programme) substan-
tiated the increased warming in the Arctic,
with warmer summers and shorter winters,
increased melting of the icecap, and declining
snow cover driving negative albedo feedbacks,
confirming what models had projected: the
arctic environment is changing fast (AMAP
2011). Gyrfalcons and their principal prey,
ptarmigan, which are widely distributed in the
Arctic, will likely be significantly affected by
these projected changes to their habitats and
food sources. This paper includes a brief dis-
cussion of the climate change information
available, a quick summary of the types of
models currently used in climate change sci-
ence, and introduces collaborative efforts that
address climate change issues specifically
focused on the Gyrfalcon in panarctic regions.

CLIMATE CHANGE INFORMATION AVAILABLE

Changes in arctic ecosystems associated with
recent climate change have been rapid and
widespread across terrestrial, freshwater, and
marine systems (Post et al. 2009). Modelers try
to capture both changes in climate and in
ecosystems responses and better simulate
potential trends in those changes, allowing
local populations and land managers to prepare
for what comes next. However, despite recent
efforts to gather extensive datasets for the

region to test the models, long-term data are
lacking and existing data include some uncer-
tainty due to the remoteness and sparse popu-
lation monitoring change.

Climate Records.—Climate records are used by
climate modelers to test and calibrate their
models, using subsets of the full dataset to do
so. When data are scarce, models are less likely
to produce robust representations of current
conditions, let alone project realistically into
the future. Around the Arctic Circle, there are
few meteorological stations, so historical cli-
mate data sets are very limited and interpola-
tions between meteorological stations may
provide uniform maps of climate but their
uncertainty is large. Measurements of climate
variables are difficult per se: there is much het-
erogeneity on the landscape that may not be
captured by a sparse meteorological station net-
work, so eventually the reliability of climate
models trying to simulate such patterns suffers.
The length of records from meteorological sta-
tions may also vary. The age of a station is of
course the main cause for the differences in
record length between stations. Less obvious is
the amount of “in-filling” performed to remove
gaps in data collections. Gaps in data records
can be caused by an instrument that has
stopped working, some disturbance to the
equipment, or even a complete change of sta-
tion instrumentation. In-filling can be done by
using data from the closest meteorological sta-
tion using the correlation between station
records, and using those to complete the dataset
assuming weather records continue to be corre-
lated through time. When only a few days are
missing, a simple linear interpolation between
days can also be used to complete the record. 

To illustrate the problem of the spatial distri-
bution of meteorological stations and their
variable length of records in the Arctic, Figure
1 shows the density of long-term meteorolog-
ical stations in North America (Groisman et al.
2005). The red stations have about 100 years
worth of records, the blue stations have about
80 years, and the green stations have in gen-
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eral, more than 25 years including the 1961–
1990 period which has been used extensively
as a baseline in modeling. Alaska and northern
Canada have relatively few meteorological sta-
tions providing climate information. This
means that every gridded climate map for
northern latitudes corresponds to multiple
interpolations over large areas that include few
stations. There are multiple ways to deal with
this problem. For example, NASA and the
Goddard Institute of Space Studies climate
modeling group fill gaps using records from
the nearest stations and provide wall-to-wall
maps of climate (http://www.giss.nasa.gov/
research/news/20110113/509984main_201111
_ anomaly_maps.jpg). The Climate Research
Unit (UK Meteorological Office) leaves out
the regions where there is scarcity of meteoro-
logical data. They thus provide incomplete
maps but there is definitely legitimacy in doing
this to make people more aware of data gaps
and the challenge for climate modelers to test
their models against historical observations. As
a result it is very difficult to look at natural cli-
mate variability when the actual length of the
records is limited and in-filling has been used
extensively. However, the variance around the
mean and the amount of extreme temperature
or precipitation events are much needed to test
model sensitivity to climate and identify cli-
mate thresholds.

Gaps in Knowledge.—Not only are there gaps
in information, there are also gaps in knowledge
about climate dynamics in climate models.
Clouds, aerosols, and deep-ocean dynamics are
still subjects for research by climate modelers.
Moreover, variable land use may affect climate
and is difficult to predict in the future. While
urban heat island effects were found to have
minimal impacts on global climate (Parker
2006), feedbacks from irrigated areas could
have affected 20th Century temperature trends
and monsoon intensity (Puma and Cook 2010).
Aeolian dust caused by destabilization of dry
soils, often through human land use (agriculture,
overgrazing, off-road vehicle use, road and
housing developments), can affect the atmos-

pheric radiation budget and create cloud con-
densation nuclei while its deposition increases
the melting rate of snow and ice (Okin et al.
2011). These feedbacks from the earth’s surface
to the global atmosphere are either lacking or
extremely simplified in most global climate
models. Furthermore, teleconnections, such as
ENSO, the El Nino Southern Oscillation index,
the PDO, Pacific Decadal Oscillation, the NAO,
the North Atlantic Oscillation, are indices of the
natural climate variability related to changes in
sea surface temperature and can be tracked, but
what causes their shift from one phase to the
other is often unknown and the subject of on-
going research. 

Consequently, general circulation models
(GCMs) that represent the synthesis of the cur-
rent understanding of how our planet’s climate
system works, continue to be developed and
increase in complexity as our knowledge and
understanding of atmosphere-ocean-soil-plant-

Figure 1. Density of long-term meteorological
stations in North America. Source: Groisman et
al. 2005. [permission from Pavel Groisman]
Present coverage of North America south of
55° N with long-term (at least 25 years of data)
stations. Red and blue dots show stations with
~100 and 80 years of data, respectively. Green
dots indicate stations with at least 25 years of
data during the 1961–1990 period. Black dots
show additional long-term Mexican stations that
are presently underoing extensive quality control.



human systems interactions and feedbacks
increases. When the first assessment report
from the Intergovernmental Panel for Climate
Change (IPCC) was published in 1990, the
representation of the oceans in global climate
models was very simple, a single layer. By
1995 for the 2nd assessment, multiple layers
had been added to simulate ocean dynamics,
and the feedbacks from anthropogenic sulphate
emissions were included. By 2001 the effects
of multiple aerosols had also been included
and by 2007 vegetation feedbacks to the cli-
mate system had been significantly developed.
These are not simple changes to large models,
and each new IPCC report summarizes our
current state of knowledge and understanding
of our planet’s climate dynamics, synthesized
in those climate models. As humans continue
to emit greenhouse gasses into the atmosphere,
we have the unique opportunity to record their
impacts on local and global climate patterns,
and adjust our models. Because human emis-
sions have never reached current levels before,
new information needs to be constantly gath-
ered to enhance scientific understanding of the
on-going changes. 

Spatial Scale.—The scale of GCMs has
decreased from ~500 x 500 km grid cells in
1990 to ~110 x 110 km grid cells in 2007,
although the question remains: at what scale
do we measure and understand climate
processes and at what scale are interpolations
most reliable (Wiens and Bachelet 2010)?
GCM projections cannot be used directly for
regional or local impact assessments because
GCMs were designed to simulate the entire
planet’s climate and their accuracy declines at
the local scale due to their inherent coarse spa-
tial resolution. Even the finer scale of regional
climate models (RCMs) (~15 km) remains
fairly coarse for biologists who deal with cliff
nest sites, for example. However, to run cli-
mate models, much information is required for
every grid cell or pixel, and data needs are not
easily met. In complex terrain, such as cliffs,
deep valleys, and rugged mountains, the local
climate may decouple from regional climate

and create local processes that are difficult to
measure, let alone simulate by climate models
(Daly et al. 2009). Cold air drainage in valleys,
temperature inversions, fog banks along large
bodies of water, all feed back to the atmos-
phere but their measurements and representa-
tions in models are far from simple. 

Researchers must therefore downscale (statis-
tically or dynamically) the original global cli-
mate model results to their grid size of interest
(Wilby et al. 1998, Diez et al. 2005). Down-
scaling coarse-scale climate information is
now widely used by biologists and land man-
agers to obtain fine resolution climate informa-
tion that may be used for vulnerability
assessments. The easiest way to downscale is
the “delta method,” in which the difference (or
ratio for precipitation) between future and cur-
rent GCM results, called the delta, is calculated
and added (or multiplied) to a “baseline” or
observed long-term average climate (1961–
1990 or 1971–2000) in order to generate a
future climate data set. It is important to
remember when using these data that, despite
the fact that the information is now served at a
fine scale, the original climate change informa-
tion was generated at a coarse scale and did not
take into account feedbacks from local
processes, assuming coarse scale homogeneity
of land cover. Another method is called statis-
tical downscaling and uses a bias correction
that minimizes the difference between the
GCMs hindcast of historical conditions and
observations. Future projections are corrected
with this calculated bias, assuming that the
correlation between GCM results and actual
climate patterns will not change in the future.
This assumption is important to remember
when future climate scenarios are being used
in land management decisions. The third and
most recent method is dynamic downscaling
that uses an RCM run at a finer spatial scale
including local climate patterns. RCMs incor-
porate local topography and land-atmosphere
feedbacks, and are the most mechanistic way
to simulate regional to local climate variables.
RCMs include boundary conditions that come
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from the general circulation models, so their
reliability is also linked to that of the GCMs
and any bias in GCM results will automatically
carry to the embedded RCM. Currently,
research teams are working on allowing feed-
backs from local climate processes (simulated
by the RCM) to the GCM, a process that is still
lacking (Rummukainen 2010). Despite their
superior skill at simulating local weather,
RCMs have large computing and data storage
requirements, so often only short time periods
rather than full time series of results are saved,
resulting in limited temporal extent of the
available data (e.g., North American Regional
Climate Change Assessment Program,
http://www.narccap.ucar.edu/). RCMs tend to
also remain too spatially coarse for manage-
ment needs (Fowler et al. 2007).

Climate Change Projections and the Ensemble
Approach.—Although GCMs and RCMs are
becoming better at simulating present-day cli-
mate (Reichler and Kim 2008), their wide
range of future projections introduces a large
degree of uncertainty to ecosystem impact
assessments. Because climate models are very
sensitive to initial conditions, modeling teams
sometimes provide results using the same
model but with different starting points, as an
ensemble of projections: each of these projec-
tions is equally plausible. Clearly, when look-
ing for likely future climate projections,
models that have simulated past climate well
when compared with observations are pre-
ferred. However, the accuracy of a climate
model to reproduce the past relates to the
model’s explanatory power but not its predic-
tive power. Ultimately, no model is a crystal
ball. At best, one can conclude that if a model
can simulate the past well, assuming that most
processes will not change, the model will do a
good job projecting the future. 

Clearly, fossil fuel emission scenarios derived
from potential demographics and assumed soci-
etal choices are the major source of uncertainty
associated with GCM projections because of
our inability to forecast future human behavior

changes (Table 1). To bracket all possible
changes IPCC reports present ensembles of
GCMs over a wide range of emission scenarios.
These ensembles provide an estimate of the
range of potential future conditions simulated
by only about 20 research groups around the
world and in truth, future climate is not neces-
sarily bound by those projections. As change
occurs today and continues to do so (e.g., ice-
free poles, glacier retreat and disappearance,
new wind patterns, changes in ocean tempera-
ture and current direction, increasing atmos-
pheric carbon dioxide concentration), some of
the basic assumptions at the core of the climate
models may become obsolete and the future
may lie entirely outside of the envelope that cli-
mate modelers have so far provided (Raisanen
2007). Ensemble means have been described as
the most reliable source of future projections
(e.g., Giorgi and Mearns 2002, Gleckler et al.
2008) but what does it mean to average models
that simulate the Arizona monsoon for example
with others that do not?

CLIMATE CHANGE IMPACTS

Ecological forecasting is relatively new (e.g.,
Clark et al. 2001, Araújo and New 2007).
While climate modelers have been very organ-
ized and always presented their result as
ensembles of approaches and scenarios, ecol-
ogists have mostly worked in independent
teams, rarely involving comparisons of multi-
ple model approaches. There are notable
exceptions where biogeochemistry models or
dynamic global vegetation models have been
subjects of comparisons, mostly focused on the
carbon budget of forests (Cramer et al. 2001,
McGuire et al. 2001, Bondeau et al. 1999,
Amthor et al. 2001).

Climate Change Impacts Models.—Modeling
studies have predicted that climatic shifts will
cause large changes in the dominant vegetation
types at high latitudes (e.g., Scholze et al.
2006). Most studies have used global biogeog-
raphy models or dynamic global vegetation
models (DGVMs) that capture changes in
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Table 1. Emission scenarios used for AR4 (IPCC 2007) with information extracted and simplified from
N. Nakicenovic et al. (2000), as well as brief description of the emission scenarios to be used in AR5
(Moss et al. 2010). Climate models are being run and average changes in temperature and
precipitation remain to be estimated across all the models that will be included in the next IPCC report.

SRES emission Description CO2-equiv. in Temperature Sea level 
scenarios used ppm by 2100 change in rise in 
for AR4 (2007) deg. Ca metersa

(conservative)

A1B Rapid economic growth, global ~850ppm 1.7-4.4 (2.8) 0.21-0.48
population peaks mid-century (9 billion 
in 2050), rapid introduction of new and 
more efficient technologies: balance 
across all energy sources

A1T Rapid economic growth, global ~700ppm 1.4-3.8 (2.4) 0.20-0.45)
population peaks mid-century (9 billion 
in 2050), rapid introduction of new and 
more efficient technologies: non-fossil 
energy sources

A1FI Rapid economic growth, global ~1550ppm 2.4-6.4 (4.0) 0.26-0.59
population peaks mid-century (9 billion 
in 2050), rapid introduction of new and
more efficient technologies: 
fossil-intensive

B1 Global environmental sustainability, global ~600ppm 1.1-2.9 (1.8) 0.18-0.38
population peaks mid-century (9 billion in 
2050), service and information economy, 
introduction of clean and resource-efficient 
technologies

A2 Regionally oriented economic ~1250ppm 2.0-5.4 (3.4) 0.23-0.51
development, continuously increasing 
population (15 billion people in 2100), 
slow technological change

B2 Local environmental sustainability, ~800ppm 1.4-3.8 (2.4) 0.2-0.43
continuously increasing global population 
(more than 10 billion people in 2100 and 
rising), slow but diverse technological 
change

Commitment No change in CO2 concentration ~380ppm

RCP 8.5 to be no stabilization >1,370ppm
used for AR5 
(2013)

RCP 6.0 stabilization after 2100 ~850ppm

RCP 4.5 stabilization after 2100 ~650ppm

RCP 2.6 Peaks before 2100 and then declines ~490ppm

SRES = Special Report on Emission Scenarios
RCP = Representative Concentration Pathway 
a 2090–99 relative to 1980–99

References: IPCC 2007, Moss et al. 2010, Nakicenovic et al. 2000,



plant functional types and associated carbon
budget, nutrient, and energy fluxes, as atmos-
pheric CO2 concentration increases and affects
their physiology. These models only coarsely
describe plant community structure without
any consideration of species assemblages (e.g.,
Bachelet et al. 2001, Scholze et al. 2006). Con-
sequently, they are mostly inadequate for
examining biodiversity issues focused on
species richness, but they are useful to describe
climate impacts on ecosystem services (carbon
sequestration, water availability) as well as the
role of climate-driven shifts in disturbance
regime on ecosystem function.

Species distribution models (also called niche
models, bioclimatic, envelope models) vary
substantially in their ability to predict current
species distributions and produce highly vari-
able predictions of species range shifts under
changing climate (Araújo and Rahbek 2006,
Elith et al. 2006, Pearson et al. 2006). Because
they are based on correlations between current
environmental conditions and species range,
the validity of the models relies on these inter-
actions remaining constant in the future
(Rehfeldt et al. 2006). They mostly ignore non-
climatic drivers such as biotic interactions,
which may be critical and highly variable in
the future (Wiens et al. 2009). Finally, these
models are snapshots that do not take into
account the trajectory between current and
future conditions. For example, a niche model
can project that, 20 years from now, conditions
will be perfect for a particular species, but that
species may have died 10 years before from an
extreme event. Abrupt changes caused by
extreme events have been measured in the
past: the numbers of returning spring Chinook
Salmon (Oncorhynchus tshawytscha) meas-
ured in the Methow River in Oregon showed
around 1977 a total collapse from about 20,000
individuals to about 2,000 due to an ocean
regime shift (Figure 2). Ocean regime shifts
are part of the natural climate variability and
can have large impacts inland, affecting for
example the frequency and extent of wildfires
(Littell et al. 2010), and ultimately affecting

species survival. Niche models, because they
are static, do not include the influence of nat-
ural climate variability on species range nor
can they simulate how changes in this variabil-
ity will affect range shifts.

Many physiological responses to climate
change in present-day species or ecosystem
dynamics are interpreted as consistent with
loss of biodiversity, declines in ecosystem
services, and insufficient time for substantial
evolutionary responses. Emerging evidence
from the variability of genotypes and species
responses (Nicotra et al. 2010), geographic
variation in susceptibility and recovery from
disturbance (Pandolfi et al. 2011), response to
past climate change (e.g., Ackerly 2003), and
potential rates of adaptation to rapid warming
supports alternative scenarios in which greater
temporal and spatial heterogeneity exists than
current projections suggest. Current models
tend to ignore the capacity of plants and ani-
mals to adapt or acclimate to new conditions.
Consequently, existing projections of changes
(particularly extirpation) in species extent are
subject to uncertainty and should be regarded
as suggestions based on current state of models
rather than predictions.
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Figure 2. Wild spring Chinook Salmon returns to
the mouth of the Columbia River by year of
outmigration. Source: Fish Passage Center
(http://www.fpc.org/).



Uncertainty in Climate Change Impacts.—
Uncertainty in climate change impacts can be
due to the impacts of model structure and
assumptions added to the uncertainty inherent
in the climate information used. Scientists at
the California Academy of Sciences (Healy
Hamilton and Michel Fernandez, article in
prep.) have created an index of uncertainty to
accompany the climate input data used in their
niche models. This uncertainty index is based
on agreement between climate models (more
agreement, less uncertainty), complexity of the
terrain (more complex terrain, more uncer-
tainty), density of the meteorological stations
(dense network, less uncertainty), climate vari-
ability (standard deviation of the models, more
variable more difficult to simulate), and others
such as proximity of human population centers
(urban heat island) or proximity to the
coast/large body of water (fog banks effect). In
the literature, confidence in the location and
extent of the areas of change may be based on
the degree of agreement between GCM model
projections (e.g., Gonzalez et al. 2010, Klaus-
meyer and Shaw 2009), assuming that if differ-
ent approaches converge on one solution (a
particular level of warming or magnitude of
precipitation) the outcome is more likely. In
fact, models can agree for the wrong reason.
More importantly, ignoring areas where cli-
mate models disagree may translate as missing
opportunities where mitigation strategies
might be effective, where climate refugia
might exist on a landscape too complex to war-
rant a single set of assumptions.

Disturbance testing was used in the early
1980s to determine whether a model was sta-
ble or chaotic after a disturbance of variable
magnitude and duration. When data exist on an
ecosystem response to a disturbance (e.g.,
removal of a predator, doubling of grazing lev-
els, doubling of summer precipitation) the
model response can be tested against observa-
tions to confirm that the model includes
enough information to mimic the natural
response. When models include thresholds,
sensitivity analyses can reveal how far from

those thresholds current conditions are and
how much they need to be modified to cause a
shift in ecosystem response, an index of the
simulated system vulnerability to change. For
example, we looked at a dynamic vegetation
model response to precipitation when precipi-
tation variance was either doubled or halved
(Figure 3). When simulating a shrubland sys-
tem in eastern Oregon, grasslands can emerge
from a doubling of the variance in rainfall ren-
dering water availability too variable to sustain
woody lifeforms, while a forest can develop
when the rainfall variance is halved, allowing
for tree establishment. 

An alternative to acquiring a set of future cli-
mate projections to run impacts models would
be to first obtain from the climate modeling
teams the probability of each climate variable’s
level of change. These would include for
example a doubling in variance for precipita-
tion, or the likely occurrence of two consecu-
tive summers with temperatures 5°C above
current maximum summer temperature). Then,
the sensitivity of the impacts model would be
tested to those various levels that might cause
ecosystem shifts, thus quantifying their risk of
occurrence in the future.

“CLIMATE-SMART” CONSERVATION STRATEGIES

Explicit conservation goals or visions are
needed to assess conservation strategies and
measure their eventual success (or failure) in
the face of climate change (Thorpe and Stanley
2011). Numerous principles have been put
forth for successful conservation but many,
including some of the most widely cited
(National Park Commission, http://www.npca.
org/commission/), are based on static visions
of returning to historic conditions. Climate
change projections, on the other hand, empha-
size a high likelihood of vegetation shifts and
altered community composition, possibly
including novel species assemblages without
any historical or contemporary precedent.
While understanding the ecological history of
a place can help shape a vision for conserva-
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tion success, one of the greatest contributions
climate change discussions have brought to the
conservation community is an appreciation of
the dynamic nature of natural systems. Any
static vision will likely fail in the face of cli-
mate change.

Cross et al. (submitted 2011) designed a frame-
work called Adaptation for Conservation Tar-
gets (ACT) to identify practical
“climate-smart” management actions for par-
ticular locations, species, or ecosystems. The
approach is based on the premise that effective
climate change adaptation can be more reliant
on local managers’ and scientists’ knowledge
of the ecosystem in question than on detailed

projections of climate change. It is an iterative
process, as steps can be repeated to accommo-
date changes in management and social prior-
ities, ecological information, and climate
trajectories. The iterative process alleviates the
pressure to consider the full complexity of a
system all at once, and helps users overcome
the uncertainty paralysis associated with pro-
jected future climate changes and impacts. I
have tried to illustrate the value of the ACT
Framework to address natural resource man-
agement decisions specifically focused on
Gyrfalcons in arctic regions based on the infor-
mation I gathered during the conference. My
goal is to show how one could initiate adapta-
tion planning, eventually generating and com-
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Figure 3. Impacts of a change in precipitation variance on simulated vegetation cover (MC1
simulation) and fire return interval in Redmond, Oregon. The graph shows the dynamics of the two
existing lifeforms, herbaceous and woody. When precipitation variance is halved and there is a reliable
source of available water, the woody lifeform eventually dominates, and woodland, later forest,
becomes established. When the variance is doubled, only grasslands can cope with erratic water
availability and dominate the landscape.



municating specific management interventions
that could maximize conservation effective-
ness of Gyrfalcons under an increasingly
altered, yet uncertain, climate. 

First, it is important to identify the ultimate
goal or management objective for this exer-
cise. In this case I have identified several pos-
sible goals: the ultimate survival of the
Gyrfalcon species, the conservation of Gyrfal-
con genetic diversity, the protection of sustain-
able Gyrfalcon population levels, and/or the
continued success of Gyrfalcon reproduction.
Secondly, it is necessary to build a graphical
conceptual model that summarizes the state of
knowledge about the system and illustrates the
climatic, ecological, social, and economic driv-
ers around the goal. Conceptual models rely on
local knowledge, and participation by relevant
experts in adaptation planning helps ensure
that the most important drivers are identified.
Primary drivers for Gyrfalcons include climate
(snowpack, temperature, rainfall), natural dis-
turbance (storms, floods, drought, fire), human
activities (pollution, hunting, poaching,
resource extraction). These drivers interact and
can exacerbate each other’s impacts; for exam-
ple poaching can decimate a population that
has already been reduced by stressful climate
conditions in a particular year. Secondary driv-
ers include habitat such as rocks or trees that
provide nesting habitats, sea ice extent which
affects the food chain and the phenological
events in the system, soil permafrost which
affects available soil water and temperature,
vegetation which affects food sources, fire
risk, shelter, and prey. Other levels of the food
chain can be included such as competitors
(e.g., Peregrine Falcon Falco peregrinus,
eagles) or predators (e.g., bears). Such a con-
ceptual model summarizes the knowledge of
local experts, scientists, and managers familiar
with the system of interest, and can become a
complex spaghetti diagram. As an example of
the usefulness of such a diagram for Gyrfal-
cons, I focused on one specific issue, air tem-
perature, to illustrate the ramifications of a
change in the temperature regime (Figure 4). A

change in temperature (or growing degree
days, GDD) can affect the choice of habitat by
Gyrfalcons, the thickness and permanence of
soil permafrost, which affects soil temperature
and available water, which may affect prey and
their food, and ultimately it affects the vegeta-
tion response, which has repercussions on fire
risk. The occurrence of fire would then trigger
various feedbacks to the entire system. It is a
simple way to look at all known interactions in
a system so that when a management strategy
is discussed, its full impacts can be identified
and better decisions can be made.

Climate change (for example a change in the
snow/rain ratio in arctic regions) or other dis-
turbance scenarios (increased fire risk,
increased resources extraction sites) can be
identified based on the caveats discussed ear-
lier and their impacts followed through using
the diagram. The future may be full of sur-
prises but judicious use of model projections at
appropriate scales should increase awareness
of change and help prepare smart strategies.
The conceptual model can be used to identify
intervention points—elements of the system
that can be manipulated—so that planners can
brainstorm practical management actions at
each point to help achieve the stated objective
under each climate change scenario. Potential
management actions are filtered by their rela-
tive feasibility and desirability, and prioritized
for implementation. It is important to note that
knowledge gaps can also emerge from this
exercise and that monitoring further changes in
the system can be a remarkably important and
rewarding action before deciding on a particu-
lar management scheme. Post et al. (2009)
concluded their remarks on recent climate
change observations in the Arctic by saying
that “foreseeing and mitigating the ecological
consequences of future climate change will
require more intensive, multidisciplinary mon-
itoring of both the physical drivers of these
systems and biological responses to them.”

The most important item in this exercise is the
collaboration between managers and experts.
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Knowledge from various disciplines and lines
of work needs to be shared and all existing
assumptions about the system being examined
need to be transparent in order to identify the
information underlying the decision-making
process and justify future decisions. New tools
exist to facilitate communication and sharing
of relevant information. For example, Conser-
vation Biology Institute created a web site,
databasin.org, that provides conservation-
related spatial information that can be shared,
manipulated, and commented on by individu-
als accessing the data freely on the web or by
groups of interested parties for whom relevant
datasets have been bookmarked and made
more easily accessible through a group feature
(Bachelet et al. 2011). The web site includes
almost 5,000 public spatial datasets (and about

3,000 private datasets) that are being used by
over 2,500 registered users (as of 31 July 2011)
and a multitude of others. It is based on
ArcGIS online. A Gyrfalcon group was created
to facilitate such sharing of information for the
participants of the conference (http://app.
databasin.org/app/pages/search.jsp#type=
group &query=gyrfalcon&sortField= relevance
&ascending=true). The information presented
at the conference can be uploaded and easily
shared with all participants this way. Increas-
ing the social capacity for awareness, under-
standing, and preparation for climate change or
other disturbance impacts will become increas-
ingly important as new approaches to protect
biological diversity in the face of climate
change are proposed and implemented.
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Figure 4. Diagram illustrating the interactions between various factors affecting Gyrfalcon populations
in Arctic regions.
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