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ABSTRACT.—Gyrfalcons (Falco rusticolus), Rock Ptarmigan (Lagopus muta), and Willow Ptarmi-
gan (L. lagopus) are quintessential Arctic species that are closely linked within the Arctic ecosys-
tem. They likely face similar challenges in the face of rapid changes to their Arctic climate.
Gyrfalcons in particular may be most challenged by rapid climate change because of their rela-
tively specialized ecological niche, small population size, and K-selected life history strategy.
Given this situation, we were interested in predicting how the distribution of these species may
change under current climate predictions. Therefore, we modeled the fundamental niche of each
species in relation to temperature and precipitation in space and time across 200 years in Alaska
(1900-2100). Though the realized niche will ultimately determine where species are distributed
in the future, we interpreted our predictions as representing the areas in which environmental con-
ditions will allow the species to occur.  We were interested in the large-scale, climate-induced
trends in expansion, contraction, and overlap of these areas over time. 

We used the Scenarios Network for Alaska Planning (SNAPs) regionalized/downscaled decadal
mean June and December temperature and precipitation predictions from the A1B scenario, and
as proposed by the United Nations Intergovernmental Panel on Climate Change (IPCC), to for-
ward-model distributions from 2009-2099 in 30-year intervals. We used historical temperature
and precipitation measurements from 1900-2006 to backwards-model the distribution of the
species’ fundamental niche to qualitatively assess forward-modeling predictive accuracy.

Forward-models predicted that the fundamental niches of Gyrfalcons and ptarmigan will contract
spatially, and backwards-models suggested that they have contracted in the past as Alaska’s cli-
mate has warmed. Over the 200-year period, the total geographic area over which the species’
fundamental niches were predicted to occur decreased overall by 20% (Willow Ptarmigan), 40%
(Rock Ptarmigan) and 60% (Gyrfalcon). The distribution of the predicted fundamental niche of
each species also became more fragmented, and the percent of spatial overlap between predicted
presence of Gyrfalcons and ptarmigan declined over time. These alterations may affect the
species’ long-term viability and co-evolution and will likely influence important biological
processes such as dispersal, genetic diversity, predator-prey dynamics, and basic behavior. Pre-
dicted shifts in the geographic distribution of their fundamental niches may have cascading effects
on other species, communities, and systems. For science-based, pro-active, adaptive management,
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ALASKA’S NATURAL HISTORY was widely driven
by the glacial retreat about 11,000 years ago.
From then on, Beringia spread and retreated to
include what is today’s Alaska. Indigenous
people affected the landscape (Glavin 2000),
but a larger influence was post-contact with
outside groups such as the Russian coloniza-
tion, the purchase of the Alaska Territory by
the United States in 1867, Alaska entering
statehood in 1959, and industrial changes dur-
ing the last 50 years. Cumulative landscape
modifications that have occurred since state-
hood are difficult to quantify or measure, but
have had a significant effect in some respects,
e.g. fragmentation, invasive species, and habi-
tat loss (Murphy et al. 2010). Despite Alaska’s
reputation for being wild, the last frontier, and
carrying endless and well-managed land-
scapes, it is clear that: a) truly pristine and
untouched environments do not exist in times
of man-made climate change (Turner et al.
2002; Chapin et al. 2009), b) Alaska is already
dealing with major conservation challenges,
including land cover and land use changes,
development of natural resources, invasive
species, and man-made climate change
(Symon et al. 2005, Hinzmann et al. 2005), c)
climate change will affect Alaska to a greater
extent than places of lower latitudes (Martin et
al. 2009), d) the Intergovernmental Panel on
Climate Change (IPCC) scenarios of future cli-
mates have been demonstrated to underesti-
mate rates of change in some systems (Stroeve
2007), and e) the global population and Alaska’s
urbanization is continuing to rise. The effects

of these issues are found across the state and
are affecting Gyrfalcons (Falco rusticolus),
their prey, and their habitats.

Biology of Gyrfalcons.—Gyrfalcons are apex
predators that sit at the top of a food chain.
Therefore, changes in the food chain and habi-
tats upon which this species depends are likely
to be evident in these birds. This is especially
so because the species breeds only in Arctic and
sub-Arctic landscapes and relies heavily on a
few prey species. Across Alaska and its circum-
polar distribution, the Gyrfalcon is a ptarmigan
specialist. Although it can take a diversity of
prey species in several combinations and frac-
tions, in nearly all instances ptarmigan make-
up the majority of the diet, especially during
pair bonding and egg production (Booms et al.
2008). Hence, understanding and predicting
how ptarmigan have and will adjust to land-
scape changes is integral to understanding,
managing and predicting the response of Gyr-
falcons. However, the Gyrfalcon’s reliance on
ptarmigan does not necessitate that their spatial
distributions and abundances are linear or auto-
matic. Buffer mechanisms and delays might
exist that may blur the link and render it indi-
rect, as documented in other systems (Watson
2010, Krebs et al. 2001). 

Biology of Ptarmigan.—Little is known about
ptarmigan in Alaska’s landscape because the
species has received little research or survey-
ing effort in the state. The distribution and eco-
logical niche of ptarmigan in Alaska and
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we propose to implement findings from this model by testing them further and making spatial
models and their predictions an inherent part of the management and legal procedures used to
address conservation in the world of rapid Arctic climate change. Received 29 December 2011,
accepted 20 June 2011.
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elsewhere is informed by many variables,
including the distribution and availability of
buds and berries, snow depth, climate, and
other factors (Dublin and Taras 2005). How-
ever, most of these drivers have not been rig-
orously mapped in Alaska or in the
circumpolar Arctic, and therefore they can
only be approximated through model predic-
tions. To our knowledge, the best published
distribution maps for the two most wide-
spread and common species in Alaska, Rock
Ptarmigan (Lagopus muta) and Willow Ptarmi-
gan (L. lagopus), are presented in their Birds
of North America accounts (Hannon et al.
1998, Montgomerie and Holder 1998), even
though the range maps are largely not based on
quantitative data. 

Fundamental Niche.—Evolution shapes species
and where and how they live. The ecological
niche is a fundamental concept, defining life
spaces (Cushman and Huettmann 2010). The
concept is well established and includes both
the fundamental niche (defined by abiotic fac-
tors) and the realized niche (defined by abiotic
and biotic factors) (Hutchinson 1957). The fun-
damental niche can be thought of as the multi-
dimensional space in which environmental
conditions allow a species to exist. This space
is further restricted by biotic variables (realized
niche) that ultimately dictate where a species
actually occurs in time and space within the
fundamental niche. Hence, it is useful to think
of the fundamental niche as defining the outer
bounds of where, in multi-dimensional space, a
species can occur. We focused on these large-
scale, climate-induced, general trends in expan-
sion, contraction, and overlap of these
fundamental niches over time. When linked
with multivariate techniques, advanced data
mining, and model predictions, the ecological
niche concept makes for a useful concept and
tool to study macroecology and for science-
based management. 

It is important to note that ecological niches
can change over time as species adapt to their
surroundings. We have implicitly assumed,

however, that the Gyrfalcon is unlikely to shift
its fundamental niche significantly within the
200-year time span examined here because
ecological niche adaptations are generally con-
served over time (Peterson et al. 1999) and
because the species is a fairly specialized, apex
predator with a small population size and K-
selected life history strategies. These charac-
teristics reduce a species’ ability to adapt to
rapid changes in climate as are predicted to
occur in Alaska through the next century. 

This assumption may be less valid for ptarmi-
gan, which are more generalistic and are con-
sidered R-selected species. This may make
them better suited to adapting to rapidly chang-
ing climate regimes. However, the ways in
which they may adapt are unknown, and we are
therefore left with modeling as our best, albeit
imperfect, tool to predict how the species may
be affected by changes in the local climate
regime. Here, we modeled a simplified version
of the fundamental niche of an apex predator
and its primary prey across space and time in
Alaska to assess how the spatial distribution of
their fundamental niches may be affected by
future changes in temperature and precipitation. 

METHODS

The idea that predators and their prey can be
modeled stems back to Lotka (1925) and oth-
ers (e.g. Krebs et al. 2001). Most of the earlier
models were not spatial and therefore lacked
important spatial linkages needed to fully
understand animal distributions on a land-
scape. Although these issues have improved
over the past decades with increases in com-
puting power, truly spatial models based on
GIS mapping concepts that take into account
many interactions, neighborhood relationships,
and autocorrelations are uncommon but have
recently been increasing (Cushman and
Huettmann 2010, Drew et al. 2010).

Training Data.—Gyrfalcon nest locations
were obtained from Booms et al. (2009) and
consisted of historical nest locations gathered



by field biologist during 1972-2007. We did
not include 41 nests used by Booms et al.
(2009) from Denali National Park because
locations of these nests were not provided.
However, to our knowledge, our dataset is the
largest collection of historical Gyrfalcon nest
locations distributed across the state of Alaska.
We used these historical nest sites (n = 414) as
presence points (Figure 1). For absence data,
we used pseudo-absence points (Engler et al.
2004) distributed randomly across Alaska (n =
10,000). For ptarmigan training data, we used
hand-digitized distribution maps for Rock and
Willow Ptarmigan from Hannon et al. (1998)
and Montgomerie and Holder (2008) (Figure
2). We randomly assigned presence points
within the mapped distribution of each ptarmi-
gan species (n = 7720). Likewise, we ran-
domly distributed points outside their mapped
distributions in Alaska and used these as
absence points (n = 2280). All presence and
absence (ptarmigan) or pseudo-absence (Gyr-
falcon) points were compiled and overlain
with the following predictor variables in
Hawth’s tools: mean June and December tem-
perature (C°), mean June and December pre-
cipitation amount (cm) (see below), elevation
(USGS 1997), and subsurface geology (Beik-
man 1980) for use as inputs into Random For-
est algorithm following Booms et al. (2009)
and Cushman and Huettmann (2010). 

Future mean June and December temperature
and precipitation data were derived from the
United Nations IPCC A1B scenario predictions,
which were downscaled to the State of Alaska
by the Scenarios Network for Alaska Planning
(SNAP). The IPCC’s A1B scenario projections
assumed moderate changes in carbon emission.
We averaged mean June and December temper-
atures and precipitation amounts by decade for
the time steps of 2009, 2039, 2069, and 2099.
For the time steps of 1916, 1946, 1976, and
2006, we used publicly available Climate
Research Unit (CRU) (2010) mean June and
December temperatures and precipitation
amounts and averaged each decade to back-
wards-model past distributions of the funda-
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Figure 1. Distribution of Gyrfalcon presence
points (historical nest sites) and random pseudo-
absence points in Alaska. 

Figure 2. Distribution of Willow and Rock
Ptarmigan occurrence in Alaska digitized from
Hannon et al. (1998) and Montgomerie and
Holder (2008), respectively. Presence and
absence points were randomly distributed inside
and outside of each species’ distribution.
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mental niche of these species (1900–2006). To
smooth out anomalous local variability in the
spatial prediction maps within the predictor lay-
ers used as inputs to the model, we followed
Booms et al. (2009) using an Inverse Distance
Weighting (IDW) interpolation to bring the lat-
tice into 5-km grid cells. The pre-processing of
the time-series climate data thus included
smoothing in both space and time. 

Modeling Approach.—We used the Random
Forests (RF) algorithm (Breiman 2001) for pre-
dictions of species presence in time and space.
This algorithm is widely used in data mining and
machine learning (Cushman and Huettmann
2010), and was previously used in Alaska for
forecasting SNAP climate data with biodiversity
and biome data (Murphy et al. 2010). 

Once the training data were prepared to be run
through the algorithm, the past and future tem-
perature and precipitation data were attached
to 5-km equidistant grid points covering the
entire State of Alaska. These point grids were
subsequently run through the rule set generated
by training the RF model with the
presence/absence points and stored in an RF
grove file. The individual point grids with tem-
perature and precipitation information for each
time-step being analyzed were then applied to
the trained model. RF then provided the distri-
bution of the species presence/absence based
on the climate information specific to the time
step. These output maps were then brought
into GIS, and further analyses were performed
to quantify the degree of change through time
for each of the three species being studied. To
assess how temperature has changed at actual
nest locations across time, we extracted tem-
perature data from each nest location at each
time step using smoothed CRU historical
weather data and SNAP future predictions.

We assessed the performance of the models by
modeling the species’ distributions backwards in
time and also by internal re-sampling of data to
generate area-under-the-curve (AUC) estimates.
Modeling backwards is used as a means to

assess the performance of forward-modeling
(Wickert et al. 2010) by allowing predictions and
historical data (truth) to be compared qualita-
tively or quantitatively. Because rigorous distri-
bution maps of ptarmigan and Gyrfalcons in
Alaska during the past 100 years were, to our
knowledge, unavailable, we used backwards-
modeling to assess only qualitative accuracy.
This approach has been used by others for cli-
mate change, impact assessments, and cumula-
tive impact studies, and for being pro-active
before damages occur (Nielsen et al. 2008,
Huettmann and Gottschalk 2010). We calculated
AUC estimates in the receiver operating curve
(ROC) plots for all models using 2006 and 2009
training data. Analysis was conducted with pro-
gram AUC_ROC using default program settings
(Schroeder 2008). We considered that AUC
scores of < 0.7 indicated low model accuracy,
0.7-0.9 moderate accuracy, and >0.9 high accu-
racy (Swets 1988). The primary challenges with
these approaches are that machine-learning
models are still sometimes distrusted by the
wildlife management discipline, and model
results lack an undisputed measure of true accu-
racy (Huettmann and Gottschalk 2010). 

RESULTS

The predicted distribution of each species’ fun-
damental niche generally decreased in spatial
extent, connectivity, and overlap across time
(Figures 3-5). Models predicted that the geo-
graphic area over which the Gyrfalcon, Rock
Ptarmigan, and Willow Ptarmigan fundamental
niches are predicted to occur declined by 60%,
40%, and 20%, respectively. An inverse rela-
tionship between increasing mean June temper-
ature and total area of predicted distribution
was present for all three species (Figure 6). The
amount of predicted spatial overlap between
Gyrfalcons and both Willow and Rock Ptarmi-
gan decreased over time from approximately
95% and 85%, to 75% and 45%, respectively
(Figure 7). Mean June temperature at known
Gyrfalcon nest sites in Alaska increased in the
past by 2.3° C from 7.7° to 9.7°C and is pre-
dicted to increase an additional 2.4° C by 2099



(Figure 8). The area-under-the-curve (AUC)
estimate in the receiver operating characteristic
(ROC) varied between 0.91-0.99 across all
models, suggesting high model accuracy. 

DISCUSSION

General Results.—Our models predicted that
the fundamental niches of Gyrfalcons and
ptarmigan will contract and have contracted in
the past as Alaska’s climate has warmed. For
all three species, the total area over which fun-
damental niches were predicted to occur gen-
erally decreased as temperature warmed across

time. The percent of spatial overlap between
Gyrfalcon and ptarmigan fundamental niches
also declined. Hence, it is reasonable to expect
that the abundance and distribution of these
species will likely decline/decrease as temper-
atures rise in Alaska unless the species alter
their fundamental niches to adapt to the docu-
mented and predicted rapid warming in
Alaska. Considering that sea ice, climate, and
cumulative impact models provided by A1B
scenarios appear to be underestimates (Stroeve
et al. 2007, Meltofte et al. 2008), our similarly-
based conclusions may likewise be underesti-
mates of climate change effects.
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Figure 3. Time 
series of predicted
distributions of the
Gyrfalcon’s funda -
mental niche in Alaska
across 200 years.
Maps of predictions in
the left column came
from models that used
historical CRU climate
data; maps in the right
column came from
models using down -
scaled IPCC A1B
climate predictions. 

• Predicted presence

• Predicted absence



183

– GYRFALCON AND PTARMIGAN DISTRIBUTIONS –

Broad Conclusions.—The models support the
following broad conclusions: 1) The spatial
extent of the fundamental niche of each of the
three species will contract in Alaska. This con-
clusion is supported by our backward-model-
ing of historical data and the replication of this
trend in each of the three species. Though we
do not know how the species will respond to
these contractions, we speculate that their dis-
tribution and abundance will decline, along
with other components of the ecosystem on
which they currently depend, as temperatures
warm. 2) The amount of spatial overlap of the

Gyrfalcon’s and ptarmigan’s fundamental
niche will decline. Again, this is supported by
trends in historical temperature data and by
replicated results in both ptarmigan species.
How the decline in spatial overlap will specif-
ically affect Alaska’s Gyrfalcon population is
currently unknown, but at minimum, it will
present a challenge to at least some of Alaska’s
Gyrfalcons. 3) The spatial extent of the funda-
mental niche of each species will become more
heterogeneous and discontinuous in the future.
This conclusion is also supported by back-
ward- and forward-modeling and the associ-

Figure 4. Time 
series of predicted
distributions of the
Willow Ptarmigan’s
fundamental niche in
Alaska across 200
years. Maps of
predictions in the left
column came from
models that used
historical CRU climate
data; maps in the right
column came from
models using
downscaled IPCC A1B
climate predictions. 

• Predicted presence

• Predicted absence



ated distribution maps of each species. In each
case, our models predicted that the distribution
of the fundamental niche will become more
scattered and discontinuous. This trend is least
apparent in results from Willow Ptarmigan
models, possibly because their niche is broader
than that of the Rock Ptarmigan or Gyrfalcon.
4) Based on historical nest and climate data,
the mean June temperature has increased by an
average of 2.3̊° C at known Gyrfalcon nest
sites. Hence, Alaska’s Gyrfalcons are already
dealing with rising temperatures, though how

they are coping, adapting, or failing to adapt to
these changes in Alaska is yet unknown. 

Interpretation, Accuracy, and Broader Appli-
cations.—This model projects only basic,
gross trends and should be treated with cau-
tion. Our work has followed best practices
with the data available and science methodolo-
gies used to quantify predictive probability (as
outlined in Huettmann and Gottschalk 2010).
Predictions and conclusions were formulated
from the best available inputs and knowledge
of fundamental niches, but admittedly, the
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Figure 5. Time 
series of predicted
distributions of the
Rock Ptarmigan’s
fundamental niche in
Alaska across 200
years. Maps of
predictions in the left
column came from
models that used
historical CRU climate
data; maps in the right
column came from
models using
downscaled IPCC A1B
climate predictions.

• Predicted presence

• Predicted absence
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models are oversimplifications of very com-
plex systems. Whereas confounding variables
and complexities will doubtlessly play impor-
tant roles in the ultimate distribution and abun-
dance of these species, we have no reason to
believe that the basic trends discovered here
are grossly inaccurate.

We emphasize that our model is driven by tem-
perature and precipitation change in regional-
ized, downscaled IPCC scenario data and CRU

historic temperature and precipitation recon-
structions. Following Zuckerberg et al. (2010),
all data layers (except for sensitive raptor nest
locations (Booms et al. 2009)), metadata, and
predictions used in the publication are available
to the global public to access online. As these
data and the overall understanding of the
effects of temperature and precipitation on
species distributions on a landscape are
improved, these species models can be changed
to incorporate new, better understood inputs. 

Figure 6. Graphs
displaying the
relationship between
changes in mean June
temperature and total
number of predicted
presence points for
three species in
Alaska over time. 



Although we predicted the distribution of fun-
damental niches spatially, the actual distribu-
tion of Gyrfalcons and ptarmigan will be
informed by additional variables from their
complex realized niche. It is likely the realized
niches will be more restricted than the funda-
mental niches predicted here unless the species
are able to rapidly adapt to new conditions and
hence, alter their realized niches. Given the
pace of climate change relative to the geologic
time over which evolution has occurred, how-
ever, we speculate that it is unlikely that these

species will adapt rapidly enough to respond to
climate change. Further, additional ecological
impacts such as disease, invasive species, and
human encroachment will likely reduce these
species’ capacity to adapt to rapid climate
change. For example, northward expansion or
ecological shifts of diseases and parasites facil-
itated by warming climates (e.g., Hueffer et al.
2011) likely pose significant confounding risks
to Gyrfalcons in particular, which are known
for their susceptibility to numerous diseases in
lower latitudes. 
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Figure 7. Graphs
displaying change in
the percent of
overlapping predicted
presence points of
Gyrfalcons and Willow
and Rock Ptarmigan in
Alaska across 200
years.
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Climate warming will fundamentally alter
ecosystems in Alaska, likely resulting in new
species and habitat assemblages (Stralberg et
al. 2009, Murphy et al. 2010). For example,
Selås et al. (2010) found that ptarmigan repro-
duction was negatively correlated with the pre-
ceding two summers’ temperatures, and that
this relationship was likely mediated by cli-
mate-induced responses at lower trophic lev-
els. Hence, response mechanisms to climate
change are likely complex and highly interre-
lated. Such interactions and animal responses
are difficult to predict in detail, but here we
showed the general trends that should be
expected and that are beginning to be docu-
mented elsewhere (e.g., Selås et al. 2010). By
modeling the basic components of fundamen-
tal niches (temperature and precipitation), we
have gained some understanding of the outer
bounds and drivers of potential shifts in distri-
butions that may be expected to occur. 

Our broad conclusions are similar to those
found in other areas and with similar methods
(Murphy et al. 2010). Other work is currently
being done on invasive species and for most of
Alaska’s terrestrial biodiversity of over 400
species (Gotthardt et al. in prep.). Similar mod-
els have been used to predict changes in other

birds’ distributions in relation to climate
change by a number of other researchers
(Crick 2004, Lawler et al. 2010). In North
America, Hitch and Leberg (2007) docu-
mented northward shifts in species distribu-
tions, likely in response to climate change. In
general, multiple studies and models have
shown changing species distributions likely
influenced by climate change and a decline in
the area of the Arctic biomes; namely on the
southern edges (Murphy et al. 2010). This is in
line with the gross trends we predicted here for
three Arctic species. 

It is also useful to focus on historical data
(backwards-modeling) to assess if the forward
predictions are reasonable. Again, in all three
cases, the basic trend in extent, heterogeneity,
and spatial overlap of the predicted fundamen-
tal niches are apparent in the historical data
during a time in which Alaska’s statewide
mean annual temperature rose by 1.6° C
(Alaska Climate Research Center 2010). Fur-
ther, a short period of apparent cooling evident
in CRU data between 1946 and 1976 was
reflected in a plateau or temporary increase in
the extent of niche distributions. This brief
upward trend is visible throughout our models
and provides additional qualitative evidence

Figure 8. Changes in mean June
temperatures at 414 historical
Gyrfalcon nest sites in Alaska across
200 years. Estimates from 1916–2006
were derived from interpolated
historical climate data (CRU) and are
actual data rather than predictions.
Estimates from 2009 onward were
predictions derived from downscaled
IPCC A1B climate predictions.



that the gross predicted trends observed are
reasonable. Lastly, all models had AUC scores
> 0.91, suggesting high model accuracy as
gauged by internal assessment (Huettmann and
Gottschalk 2010). Hence, we found no evi-
dence to suggest that our models were grossly
inaccurate or provide contradictory results.

Finally, it should be noted that Gyrfalcons,
ptarmigan, and their habitats are not just
affected by climate locally in Alaska. Our data
are based on global climate models, and our
results should be applicable and testable across
the circumpolar Arctic and subarctic north,
keeping in mind, however, that species may
respond differently in differing climatic condi-
tions. 

Management Implications.—Our work demon-
strates the value of archiving, collating, and
sharing raptor nest location data to maximize
the return from such data (Zuckerberg et al.
2010). Because poaching of raptors occurs in
some areas, modelers need to be sensitive to
real conservation concerns in the field regard-
ing public access to some data types. However,
careful sharing of sensitive data, as we demon-
strated here in a modeling framework, is impor-
tant to long-term conservation assessments.

Gyrfalcon and ptarmigan distributions are
linked in the food web and are an integral part
of a unique ecosystem that is being affected by
climate change and other landscape-level
changes. Here we have shown for Alaska that
increasing temperatures are likely to alter the
distribution of the fundamental niches of three
Arctic species by decreasing their spatial
extent, overlap, and continuity. These alter-
ations will likely influence important ecologi-
cal and biological processes such as dispersal,
genetic diversity, and predator-prey dynamics,
and may have cascading effects on other
species, communities, and systems. For adap-
tive management, we propose to test these
models further and to make such spatial mod-
els and their predictions an inherent part of the
management and legal procedures used to

address conservation in the world of rapid cli-
mate change.
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